RESIN SOFTENING

PROSOFT™ ER10011-NA

ProSoft ER10011-NA (P/N ER10011-NA) is a premium grade, high capacity, weak acid gel type cation resin supplied in the sodium form (also available in hydrogen form) as moist, tough, uniform, spherical beads. Ion exchange activity is based on its carboxylic functional group. ER10011-NA is intended for use in dealkalization, deionization, and chemical processing applications.

FEATURES & BENEFITS

- High capacity—Over 80 kilograins total capacity per cubic foot assures maximum operating efficiency and capacity compared with other carboxylic type resins.
- Carboxylic functional groups—Gives extremely high regeneration efficiencies and high operating capacities.
- **Highly uniform particle size**—16 to plus 50 mesh range; gives a lower pressure drop while maintaining superior kinetics.
- Superior physical stability—90% plus sphericity together with a uniform gel structure and a very uniform particle size provide greater resistance to bead breakage.

Applications

Demineralization—Can be used to remove cations associated with alkalinity in multiple bed demineralizers.

Softening—Can be operated as a softener, in the sodium cycle. This requires a two stage regeneration using a strong acid first stage to remove multivalent ions from the bed followed by a neutralization rinse with an alkali.

Dealkalization—Bicarbonate alkalinity associated with multivalent cations such as hardness can be effectively removed using the hydrogen form. When operated in this manner both hardness and alkalinity are removed. The reaction is limited by the amount of alkalinity and the ratio of hardness (multivalent cations) to alkalinity.

(See the graphs at the bottom of the reverse side of this page.)

This product has been tested and certified by the Water Quality Association according to NSF/ANSI-61 for materials safety only.

Suggested Operating Conditions

Maximum Temperature	250° F
Minimum Bed Depth	30 inches
Service Flow Rate	2 to 5 gpm/cu.ft.
Backwash Rate	50 to 75 percent
	Bed Expansion
Regenerant Concentration	
HCl	1 to 4 percent
H ₂ SO ₄	0.8 to 8 percent
Regenerant Flow Rate	0.3 to 0.75 gpm/cu.ft.
	4

Regenerant Contact Time At least 30 minutes Regenerant Level Depends on Alkalinity Displacement Rinse Rate Same as Regenerant

Flow Rate

Displacement Rinse Volume 10 to 15 gal/cu.ft. Fast Rinse Rate..... Same as Service

Flow Rate

Typical Properties

*1	
Polymer Structure	Acrylic/Divinylbenzene
Functional Group	R-(COOH)-
lonic Form, as shipped	Sodium or Hydrogen
Physical Form	Tough, Spherical Beads
Screen Size Distribution	16 to 50
+16 mesh (U.S. Std.)	< 10 percent
– 50 mesh (U.S. Std.)	< 1 percent

pH Range...... 0 to 14 Sphericity...... 90+ percent Water Retention 53 to 58 percent

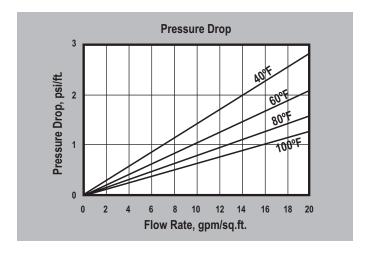
Solubility Insoluble

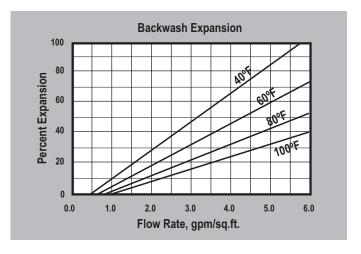
Approximate Shipping Weight

Sodium Form 44 lb/cu.ft. Hydrogen Form 47 lb/cu.ft.

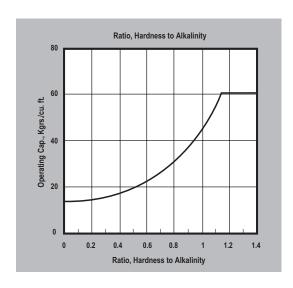
Swelling H+ to Na+ Approx. 100 percent

Total Capacity

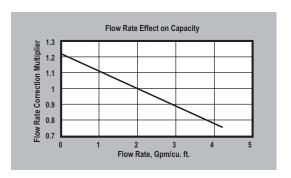

Sodium Form 2.0 meg/mL Hydrogen Form > 4.0 meg/mL

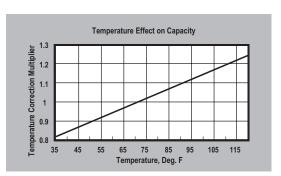

SOFTENING RESIN

PROSOFT™ ER10011-NA



PRESSURE DROP — The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate at various temperatures.




BACKWASH — After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of ProSoft ER10011-NA in the hydrogen form.

ALKALINITY — These three graphs show the base operating capacity according to the ratio of hardness to alkalinity, and the effects of exhaustion flow rate and temperature to a 10% alkalinity leakage endpoint.

BOULEVARD,

996 BLUFF CITY